Nuclear Receptor Nur77 Attenuates Airway Inflammation in Mice by Suppressing NF-κB Activity in Lung Epithelial Cells.
نویسندگان
چکیده
Allergic asthma is characterized by persistent chronic airway inflammation, which leads to mucus hypersecretion and airway hyperresponsiveness. Nuclear receptor Nur77 plays a pivotal role in distinct immune and inflammatory cells and is expressed in eosinophils and lung epithelium. However, the role of Nur77 in allergic airway inflammation has not been studied so far. In the present study, we determined the role of Nur77 in airway inflammation using a murine model of OVA-induced allergic airway inflammation. We found that OVA-challenged Nur77 knockout (KO) mice show significantly enhanced infiltration of inflammatory cells, including eosinophils and lymphocytes, and aggravated mucus production. The infiltration of macrophages is limited in this model and was similar in wild-type and Nur77 KO mice. Higher levels of Th2 cytokines were found in bronchoalveolar lavage fluid and draining lymph node cells of Nur77-KO mice, as well as increased serum IgG1 and IgG2a levels. Knockdown of Nur77 in human lung epithelial cells resulted in a marked increase in IκBα phosphorylation, corresponding with elevated NF-κB activity, whereas Nur77 overexpression decreased NF-κB activity. Consistently, Nur77 significantly decreased mRNA levels of inflammatory cytokines and Muc5ac expression and also attenuated mucus production in lung epithelial cells. To further corroborate these findings, we searched for association of single nucleotide polymorphisms in Nur77 gene with asthma and with the severity of bronchial hyperresponsiveness. We identified three Nur77 single nucleotide polymorphisms showing association with severity of bronchial hyperresponsiveness in asthma patients. Collectively, these findings support a protective role of Nur77 in OVA-induced airway inflammation and identify Nur77 as a novel therapeutic target for airway inflammation.
منابع مشابه
Increased ERK signalling promotes inflammatory signalling in primary airway epithelial cells expressing Z α1-antitrypsin
Overexpression of Z α1-antitrypsin is known to induce polymer formation, prime the cells for endoplasmic reticulum stress and initiate nuclear factor kappa B (NF-κB) signalling. However, whether endogenous expression in primary bronchial epithelial cells has similar consequences remains unclear. Moreover, the mechanism of NF-κB activation has not yet been elucidated. Here, we report excessive N...
متن کاملMonascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway
Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...
متن کاملNaringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro
Objective(s): Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Materials and Methods: Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 8...
متن کاملImpeding the interaction between Nur77 and p38 reduces LPS-induced inflammation.
Sepsis, a hyperinflammatory response that can result in multiple organ dysfunctions, is a leading cause of mortality from infection. Here, we show that orphan nuclear receptor Nur77 (also known as TR3) can enhance resistance to lipopolysaccharide (LPS)-induced sepsis in mice by inhibiting NF-κB activity and suppressing aberrant cytokine production. Nur77 directly associates with p65 to block it...
متن کاملDeguelin Attenuates Allergic Airway Inflammation via Inhibition of NF-κb Pathway in Mice
Asthma is a chronic respiratory disease characterized by airway inflammation and remodeling, resulting in a substantial economic burden on both patients and society. Deguelin, a constituent of the Leguminosae family, exhibits anti-proliferative and anti-inflammatory activities in cancer mice models via inhibiting phosphatidylinositol 3-kinases and the NF-κB pathway. We demonstrated that degueli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 195 4 شماره
صفحات -
تاریخ انتشار 2015